Department of Mathematics
 Jhargram Raj College
 Class: Mathematics(H) Sem-I

Topic: Geometry(2D \& 3D)
Date: 31.10.19

1. If the perpendicular straight lines $a x+b y+c=0 \& b x-a y+c^{\prime}=0$ be taken as the axes of $x \& y$ respectively, then show that the equation $(a x+b y+c)^{2}-2\left(b x-a y+c^{/}\right)^{2}=1$ will be transformed into $\left(y^{\prime}\right)^{2}-2\left(x^{\prime}\right)^{2}=\frac{1}{a^{2}+b^{2}}$.
2. If by a rotation of rectangular axes about the origin $(a x+b y) \&(c x+d y)$ be changed to $\left(a^{\prime} x^{\prime}+b^{\prime} y^{\prime}\right) \&\left(c^{\prime} x^{\prime}+d^{\prime} y^{\prime}\right)$ respectively, then show that $a d-b c=a^{\prime} d^{\prime}-b^{\prime} c$.
3. Show that there is one point whose coordinates do not alter due to a rigid motion.
4. Classify the following equations accordingly to the presence of centre(s
(i) $2 x^{2}-3 x y+5 y^{2}-2 x+y-3=0$, (ii) $2 x^{2}+4 x y+2 y^{2}-x-y+5=0$, (iii) $(x-2 y)^{2}+3(x-2 y)+k=0, k=$ constant.
5. Reduce the equation $3\left(x^{2}+y^{2}\right)=2 x y=4 \sqrt{2}(x+y)$ to its canonical form. Name the conic and determine the equations of its axes and directrix.
6. Reducing the equation $4 x^{2}+4 x y+y^{2}-4 x-2 y+a=0$ to its canonical form, determine the nature of the conic for different values of a.
7. Show that the conic represented by $\left(a^{2}+1\right) x^{2}+2(a+b) x y+\left(b^{2}+1\right) y^{2}=c, c>0$ is an ellipse of area $\frac{\pi c}{|a b-1|}, a b \neq 1$.
8. If P and Q are two points on a given conic with focus at S such that $<P S Q$ is a constant, prove that the locus of the point of intersection of tangents at P and Q is also a conic whose focus at S. If the given conic is a parabola@d dif the tangents at P and Q meet at T, show that $S P . S Q=(S T)^{2}$.
9. If a focal chord of the conic $\frac{l}{r}=1+e \cos \theta$ makes an angle α with the axis, show that the angle between the tangent at its extremities is $\tan ^{-1} \frac{2 e \sin \alpha}{\left|1-e^{2}\right|}$.
10. A conic $\frac{l}{r}=1+e \cos \theta$ is cut by a circle passing through the pole in four points whose $\begin{aligned} & \text { radius vectors are } r_{i}, i, i\end{aligned}=1(1) 4$. Show that $r^{-1}+r^{-2}+r^{-3}+r^{-4}=\frac{2}{l} \& \prod_{i=1}^{4} r_{i}=$ $\frac{4 d^{2} l^{2}}{e^{2}}$.
11. Prove that the locus of the midpoint of any focal chord of the conic $\frac{l}{r}=1+e \cos \theta$ is $r\left(1-e^{2} \cos ^{2} \theta\right)+e l \cos \theta=0$.
12. Showthat the length of the focal chord of the conic $\frac{l}{r}=1-e \cos \theta$ which is included to the (11itial line at angle α is $\frac{2 l}{1-e^{2} \cos ^{2} \alpha}$.
13. A Chord PQ of a conic with eccentricity e and semi latus rectum 1 subtends a right angle at a focus S. Show that $\left(\frac{1}{S P}-\frac{1}{l}\right)^{2}+\left(\frac{1}{S Q}-\frac{1}{l}\right)^{2}=\frac{e^{2}}{l^{2}}$.
14. On the ellipse $r=\frac{2 l}{5-2 \cos \theta}$ find the point with greatest radius vector.
15. If the normals at the points with vectorial angles $\alpha, \beta, \gamma, \delta$ on the conic $\frac{l}{r}=1+e \cos \theta$ meet at a point, show that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2} \tan \frac{\delta}{2}+\left(\frac{1-e}{1+e}\right)^{2}=0$.
16. A variable sphere passes through the points $(0,0, \pm c)$ and cuts the straight lines $y=$ $x \tan \alpha, z=c$ and $y=-x \tan \alpha, z=-c$ at the points P and $P^{/}$other than $(0,0, \pm c)$. If $P P^{\prime}=2 a$ show that the centre of the sphere lies on the circle $x^{2}+y^{2}=\left(a^{2}-\right.$ $c 2 \operatorname{cosec} 22 a, z=0$.
17. If every plane cuts a quadric surface in a circle, show that the surface is sphere.
18. Find the equation of the sphere which passes through the circle $y=0,(x-a)^{2}+$ $(z-c)^{2}=r^{2}$ and touches the plane $x=0$. Show that the area which it cuts off from the plane $z=0$ is $\pi\left(a^{2}-c^{2}\right)$.
19. The Section of the cone whose guiding curve is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$ by the pláne $x=0$ is a rectangular hyperbola. Show that the locus of the vertex of the cone is the surface $\frac{x^{2}}{a^{2}}+\frac{y^{2}+z^{2}}{b^{2}}=1$.
20. Two cones are described with guiding curves $z x=a^{2}, y=0 \& y z=b^{2}, x=0$ and with the same vertex. Prove that if their four common generators meet the plane $z=0$ in four con cyclic points then the vertex lies on the surface $z\left(x^{2}+y^{2}\right)=a^{2} x+b^{2} y$.
21. Show that the equation of the cylinder whose generators intersect the curve $a x^{2}+b y^{2}+$ $c z^{2}=1, l x+m y+n z=p$ and are parallel to z -axis is $\left(\mathrm{a} n^{2}+c l^{2}\right) x^{2}+\left(b n^{2}+c m^{2}\right) y^{2}+$ $2 l m c x y-2 m c p y-2 l p c x+c p^{2}-n^{2}=0$.
22. Show that the perpendiculars from the origin to the generators of the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-$ $\frac{z^{2}}{c^{2}}=1$ lie on the surface $\frac{a^{2}\left(b^{2}+c^{2}\right)^{2}}{x^{2}}+\frac{b^{2}\left(a^{2}+c^{2}\right)^{2}}{y^{2}} \fallingdotseq \frac{c^{2}\left(a^{2}-b^{2}\right)^{2}}{z^{2}}$.
23. Show that the perpendiculars from the origin to the generators of the hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 z$ lie on the cone $\left(\frac{x}{a}-\frac{y}{b}\right)(a x-b y)+2 z^{2}=0$.
24. If the generator through a point P on the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ meets the principal elliptic section in two points such that the eccentric angle of one is three times that of the other, prove that point P lies on the curve of intersection of the hyperboloid with the cylinder $y^{2}\left(z^{2}+c^{2}\right)=4 b^{2} z^{2}$.
25. Prove that the area of the section of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ by the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=$ 1 is $\frac{2 \pi}{3 \sqrt{3}}\left(\sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}\right)$.

References: 1. Advanced Analytical Geometry by J.G.Chakravorty and P.R.Ghosh. 2. Analytical Geometry including vector analysis.

